Transcranial Direct Current Stimulation and its Impact on Attention Networks in Tinnitus Patients

Document Type : Original Article

Authors

1 Department of Cognitive Neuroscience, Faculty of Psychology and Educational Sciences, University of Tabriz, Tabriz, Iran

2 Department of Psychology, Faculty of Psychology and Educational Sciences, Tabriz University, Tabriz, Iran

3 Department of Audiology, University of Social welfare and Rehabilitation Science, Tehran, Iran & Pediatric Neurorehabilitation Research center, University of Social welfare and Rehabilitation Science, Tehran, Iran

Abstract

Background: Tinnitus is a prevalent condition often leading to disruptions in attentional functions. The effect of transcranial direct current stimulation (tDCS) on cortical attention networks has yielded inconsistent findings.
 
Objectives: This study aimed to examine the influence of tDCS on patients suffering from tinnitus on the efficacy of alerting, orienting, and conflict, as gauged by the Attention Network Test (ANT).
 
Methods: 30 tinnitus patients with chronic bothersome tinnitus longer than 6 months with moderate and high severities were placed into two separate groups at random. The control group (n=15) underwent sham tDCS, while the treatment group (n=15) received active tDCS, with the anodal electrode placed over the left dorsolateral prefrontal cortex (DLPFC) and the cathodal electrode over the right DLPFC. The ANT and the Electroencephalography (EEG) recording were used before and after interventions. The differences were analyzed using the MANCOVA test.
 
Results: There was a significant difference (P<0.01) between the control and tDCS groups only in terms of the mean post-test scores of conflict. However, no significant difference was observed in the means of alerting and orienting. This suggests that tDCS primarily influenced the conflict index, leading to its enhancement. EEG recording indicated a variety of significant changes in various frequency bands in different channel locations. Theta and high beta showed no significant difference in any channel, and most changes happened in the form of an increase in high alpha after tDCS. Absolute Power in theta and high beta frequency ranges showed no significant difference in any channel, and most changes in Absolute Power happened as an increase in high alpha frequency after tDCS.
 
Conclusion: tDCS potentially improves the attentional network in patients afflicted with tinnitus. More research is required to draw definitive conclusions, especially since only conflict demonstrated significance in the ANT test.
 

Keywords


1. McCormack A, Edmondson-Jones M, Somerset S, Hall D. A systematic review of the reporting of tinnitus prevalence and severity. Hearing research. 2016;337:70-9. [DOI:10.1016/j.heares.2016.05.009]
https://doi.org/10.1016/j.heares.2016.05.009
PMid:27246985
 
2. Baguley D, McFerran D, Hall D. Tinnitus. The Lancet. 2013;382(9904):1600-7. [DOI:10.1016/S0140-6736(13)60142-7]
https://doi.org/10.1016/S0140-6736(13)60142-7
PMid:23827090
 
3. Henry JA, Roberts LE, Caspary DM, Theodoroff SM, Salvi RJ. Underlying mechanisms of tinnitus: review and clinical implications. Journal of the American Academy of Audiology. 2014;25(01):005-22. [DOI:10.3766/jaaa.25.1.2]
https://doi.org/10.3766/jaaa.25.1.2
PMid:24622858 PMCid:PMC5063499
 
4. Eggermont JJ, Tass PA. Maladaptive neural synchrony in tinnitus: origin and restoration. Frontiers in neurology. 2015;6:29. [DOI:10.3389/fneur.2015.00029]
https://doi.org/10.3389/fneur.2015.00029
PMid:25741316 PMCid:PMC4330892
 
5. Eggermont JJ, Roberts LE. The neuroscience of tinnitus. Trends in neurosciences. 2004;27(11):676-82.
https://doi.org/10.1016/j.tins.2004.08.010
PMid:15474168
 
6. Weisz N, Wienbruch C, Dohrmann K, Elbert T. Neuromagnetic indicators of auditory cortical reorganization of tinnitus. Brain. 2005;128(11):2722-31. [DOI:10.1016/j.tins.2004.08.010]
https://doi.org/10.1016/j.tins.2004.08.010
PMid:15474168
 
7. Moazami-Goudarzi M, Michels L, Weisz N, Jeanmonod D. Temporo-insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of chronic tinnitus patients. BMC neuroscience. 2010;11(1):1-12. [DOI: 10.1186/1471-2202-11-40]
https://doi.org/10.1186/1471-2202-11-40
PMid:20334674 PMCid:PMC2858736
 
8. Lorenz I, Müller N, Schlee W, Hartmann T, Weisz N. Loss of alpha power is related to increased gamma synchronization-a marker of reduced inhibition in tinnitus? Neuroscience letters. 2009;45 (3):225-8. [DOI: 10.1016/j.neulet.2009.02.028]
https://doi.org/10.1016/j.neulet.2009.02.028
PMid:19429040
 
9. van Der Loo E, Gais S, Congedo M, Vanneste S, Plazier M, Menovsky T, et al. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PloS one. 2009;4(10):e7396. [DOI: 10.1371/journal.pone.0007396]
https://doi.org/10.1371/journal.pone.0007396
PMid:19816597 PMCid:PMC2754613
 
10. Weisz N, Hartmann T, Müller N, Lorenz I, Obleser J. Alpha rhythms in audition: cognitive and clinical perspectives. Front Psychol. 2011;2:73. [DOI: 10.3389/fpsyg.2011.00073]
https://doi.org/10.3389/fpsyg.2011.00073
 
11. Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proceedings of the National Academy of Sciences. 1999;96(26):15222-7. [DOI: 10.1073/pnas.96.26.15222]
https://doi.org/10.1073/pnas.96.26.15222
PMid:10611366 PMCid:PMC24801
 
12. Sedley W, Teki S, Kumar S, Barnes GR, Bamiou D-E, Griffiths TD. Single-subject oscillatory gamma responses in tinnitus. Brain. 2012;135(10):3089-100. [DOI: 10.1093/brain/aws220]
https://doi.org/10.1093/brain/aws220
PMid:22975389 PMCid:PMC3470708
 
13. Sedley W, Friston KJ, Gander PE, Kumar S, Griffiths TD. An integrative tinnitus model based on sensory precision. Trends in neurosciences. 2016;39(12):799-812. [DOI: 10.1016/j.tins.2016.10.004]
https://doi.org/10.1016/j.tins.2016.10.004
PMid:27871729 PMCid:PMC5152595
 
14. McKenna L, Handscomb L, Hoare DJ, Hall DA. A scientific cognitive-behavioral model of tinnitus: novel conceptualizations of tinnitus distress. Frontiers in neurology. 2014;5:196. [DOI: 10.3389/fneur.2014.00196]
https://doi.org/10.3389/fneur.2014.00196
PMid:25339938 PMCid:PMC4186305
 
15. Clarke NA, Henshaw H, Akeroyd MA, Adams B, Hoare DJ. Associations between subjective tinnitus and cognitive performance: systematic review and meta-analyses. Trends in Hearing. 2020;24:2331216520918416. [DOI: 10.1177/2331216520918416]
https://doi.org/10.1177/2331216520918416
PMid:32436477 PMCid:PMC7243410
 
16. Araneda R, Renier L, Dricot L, Decat M, Ebner-Karestinos D, Deggouj N, et al. A key role of the prefrontal cortex in the maintenance of chronic tinnitus: An fMRI study using a Stroop task. NeuroImage: Clinical. 2018;17:325-34. [DOI: 10.1016/j.nicl.2017.10.029]
https://doi.org/10.1016/j.nicl.2017.10.029
PMid:29159044 PMCid:PMC5675730
 
17. Rossiter S, Stevens C, Walker G. Tinnitus and its effect on working memory and attention. 2006.
https://doi.org/10.1044/1092-4388(2006/012)
PMid:16533080
 
18. Hallam R, McKenna L, Shurlock L. Tinnitus impairs cognitive efficiency. International journal of audiology. 2004;43(4):218-26. [DOI: 10.1044/1092-4388(2006/012)]
https://doi.org/10.1044/1092-4388(2006/012)
PMid:16533080
 
19. Andersson G, Eriksson J, Lundh L-G, Lyttkens L. Tinnitus and cognitive interference: a stroop paradigm study. Journal of Speech, Language, and Hearing Research. 2000;43(5):1168-73. [DOI: 10.1044/jslhr.4305.1168]
https://doi.org/10.1044/jslhr.4305.1168
PMid:11063238
 
20. Heeren A, Maurage P, Perrot H, De Volder A, Renier L, Araneda R, et al. Tinnitus specifically alters the top-down executive control sub-component of attention: evidence from the attention network task. Behavioural brain research. 2014;269:147-54. [DOI: 10.1016/j.bbr.2014.04.043]
https://doi.org/10.1016/j.bbr.2014.04.043
PMid:24793493
 
21. Schecklmann M, Lehner A, Gollmitzer J, Schmidt E, Schlee W, Langguth B. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus. Frontiers in cellular neuroscience. 2015;9:421. [DOI: 10.3389/fncel.2015.00421]
https://doi.org/10.3389/fncel.2015.00421
PMid:26557055 PMCid:PMC4617176
 
22. Joos K, De Ridder D, Van de Heyning P, Vanneste S. Polarity specific suppression effects of transcranial direct current stimulation for tinnitus. Neural plasticity. 2014;2014. [DOI: 10.1155/2014/930860]
https://doi.org/10.1155/2014/930860
PMid:24812586 PMCid:PMC4000666
 
23. Hyvärinen P, Yrttiaho S, Lehtimäki J, Ilmoniemi RJ, Mäkitie A, Ylikoski J, et al. Transcutaneous vagus nerve stimulation modulates tinnitus-related beta-and gamma-band activity. Ear and Hearing. 2015;36(3):e76-e85. [DOI: 10.1097/AUD.0000000000000123]
https://doi.org/10.1097/AUD.0000000000000123
PMid:25437140
 
24. Shekhawat GS, Sundram F, Bikson M, Truong D, De Ridder D, Stinear CM, et al. Intensity, duration, and location of high-definition transcranial direct current stimulation for tinnitus relief. Neurorehabilitation and neural repair. 2016;30(4):349-59. [DOI: 10.1177/1545968315595286]
https://doi.org/10.1177/1545968315595286
PMid:26180052
 
25. Hyvärinen P, Mäkitie A, Aarnisalo AA. Self-administered domiciliary tDCS treatment for tinnitus: a double-blind sham-controlled study. PLoS One. 2016;11(4):e0154286. [DOI: 10.1371/journal.pone.0154286]
https://doi.org/10.1371/journal.pone.0154286
PMid:27124116 PMCid:PMC4849783
 
26. Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. International Journal of Neuropsychopharmacology. 2011;14(8):1133-45. [DOI: 10.1017/S1461145710001690]
https://doi.org/10.1017/S1461145710001690
PMid:21320389
 
27. Forogh B, Mirshaki Z, Raissi GR, Shirazi A, Mansoori K, Ahadi T. Repeated sessions of transcranial direct current stimulation for treatment of chronic subjective tinnitus: a pilot randomized controlled trial. Neurological Sciences. 2016;37:253-9. [DOI: 10.1007/s10072-015-2393-9]
https://doi.org/10.1007/s10072-015-2393-9
PMid:26498289
 
28. Pal N, Maire R, Stephan MA, Herrmann FR, Benninger DH. Transcranial direct current stimulation for the treatment of chronic tinnitus: a randomized controlled study. Brain stimulation. 2015;8(6):1101-7. [DOI: 10.1016/j.brs.2015.06.014]
https://doi.org/10.1016/j.brs.2015.06.014
PMid:26198363
 
29. Newman CW, Jacobson GP, Spitzer JB. Development of the tinnitus handicap inventory. Archives of Otolaryngology-Head & Neck Surgery. 1996;122(2):143-8. [DOI:10.1001/archotol.1996.01890140029007]
https://doi.org/10.1001/archotol.1996.01890140029007
PMid:8630207
 
30. Figueiredo RR, Azevedo AAd, Oliveira PdM. Correlation analysis of the visual-analogue scale and the Tinnitus Handicap Inventory in tinnitus patients. Revista Brasileira de Otorrinolaringologia. 2009;75:76-9. [DOI: 10.1016/s1808-8694(15)30835-1]
https://doi.org/10.1016/S1808-8694(15)30835-1
PMid:19488564
 
31. Jensen M, Hüttenrauch E, Müller-Mazzotta J, Stuck BA, Weise C. On the impairment of executive control of attention in chronic tinnitus: Evidence from the attention network test. Behavioural Brain Research. 2021;414:113493. [DOI: 10.1016/j.bbr.2021.113493]
https://doi.org/10.1016/j.bbr.2021.113493
PMid:34329668
 
32. Vanneste S, Walsh V, Van De Heyning P, De Ridder D. Comparing immediate transient tinnitus suppression using tACS and tDCS: a placebo-controlled study. Experimental brain research. 2013;226:25-31. [DOI: 10.1007/s00221-013-3406-7]
https://doi.org/10.1007/s00221-013-3406-7
PMid:23314693
 
33. Das SK, Wineland A, Kallogjeri D, Piccirillo JF. Cognitive speed as an objective measure of tinnitus. The Laryngoscope. 2012;122(11):2533-8. [DOI: 10.1002/lary.23555]
https://doi.org/10.1002/lary.23555
PMid:23108884 PMCid:PMC3500665
 
34. Mohamad N, Hoare DJ, Hall DA. The consequences of tinnitus and tinnitus severity on cognition: a review of the behavioural evidence. Hearing research. 2016;332:199-209. [DOI: 10.1016/j.heares.2015.10.001]
https://doi.org/10.1016/j.heares.2015.10.001
PMid:26523370
 
35. Tegg-Quinn S, Bennett RJ, Eikelboom RH, Baguley DM. The impact of tinnitus upon cognition in adults: A systematic review. International journal of audiology. 2016;55(10):533-40. [DOI: 10.1080/14992027.2016.1185168]
https://doi.org/10.1080/14992027.2016.1185168
PMid:27240696
 
36. Yuan T, Yadollahpour A, Salgado-Ramírez J, Robles-Camarillo D, Ortega-Palacios R. Transcranial direct current stimulation for the treatment of tinnitus: a review of clinical trials and mechanisms of action. BMC neuroscience. 2018;19:1-9. [DOI: 10.1186/s12868-018-0467-3]
https://doi.org/10.1186/s12868-018-0467-3
PMid:30359234 PMCid:PMC6202858
 
37. Shekhawat GS, Stinear CM, Searchfield GD. Modulation of perception or emotion? A scoping review of tinnitus neuromodulation using transcranial direct current stimulation. Neurorehabilitation and neural repair. 2015;29(9):837-46. [DOI: 10.1177/1545968314567152]
https://doi.org/10.1177/1545968314567152
PMid:25670225
 
38. Garin P, Gilain C, Van Damme J-P, De Fays K, Jamart J, Ossemann M, et al. Short-and long-lasting tinnitus relief induced by transcranial direct current stimulation. Journal of neurology. 2011;258:1940-8. [DOI: 10.1007/s00415-011-6037-6]
https://doi.org/10.1007/s00415-011-6037-6
PMid:21509429 PMCid:PMC3214608
 
39. Fregni F, Marcondes R, Boggio PS, Marcolin M, Rigonatti SP, Sanchez T, et al. Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation. European Journal of Neurology. 2006;13(9):996-1001. [DOI: 10.1111/j.1468-1331.2006.01414.x]
https://doi.org/10.1111/j.1468-1331.2006.01414.x
PMid:16930367
 
40. Noreña AJ, Farley BJ. Tinnitus-related neural activity: theories of generation, propagation, and centralization. Hearing research. 2013;295:161-71. [DOI: 10.1016/j.heares.2012.09.010]
https://doi.org/10.1016/j.heares.2012.09.010
PMid:23088832
 
41. Lee HY, Choi MS, Chang DS, Cho C-S. Combined bifrontal transcranial direct current stimulation and tailor-made notched music training in chronic tinnitus. Journal of Audiology & Otology. 2017;21(1):22. [DOI: 10.7874/jao.2017.21.1.22]
https://doi.org/10.7874/jao.2017.21.1.22
PMid:28417104 PMCid:PMC5392009
 
42. Frank E, Schecklmann M, Landgrebe M, Burger J, Kreuzer P, Poeppl TB, et al. Treatment of chronic tinnitus with repeated sessions of prefrontal transcranial direct current stimulation: outcomes from an open-label pilot study. Journal of neurology. 2012;259:327-33. [DOI: 10.1007/s00415-011-6189-4]
https://doi.org/10.1007/s00415-011-6189-4
PMid:21808984
 
43. Summerfield C, Mangels JA. Coherent theta-band EEG activity predicts item-context binding during encoding. Neuroimage. 2005;24(3):692-703. [DOI: 10.1016/j.neuroimage.2004.09.012]
https://doi.org/10.1016/j.neuroimage.2004.09.012
PMid:15652304
 
44. Weiler EW, Brill K, Tachiki KH, Wiegand R. Electroencephalography correlates in tinnitus. International Tinnitus Journal. 2000;6(1):21-4.
 
45. Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS medicine. 2005;2(6):e153. [DOI: 10.1371/journal.pmed.0020153]
https://doi.org/10.1371/journal.pmed.0020153
PMid:15971936 PMCid:PMC1160568
 
46. Vanneste S, Plazier M, Van Der Loo E, Van de Heyning P, Congedo M, De Ridder D. The neural correlates of tinnitus-related distress. Neuroimage. 2010;52(2):470-80. [DOI: 10.1016/j.neuroimage.2010.04.029]
https://doi.org/10.1016/j.neuroimage.2010.04.029
PMid:20417285