Patient's Opinions on the Use of Artificial Intelligence in Healthcare: A Systematic Review

Document Type : Review Article/ Systematic Review Article/ Meta Analysis

Authors

1 MSc in Medical Informatics, Health Information Technologies Unit of Economic Health Department, Mashhad University of Medical Sciences, Mashhad, Iran

2 Bachelor degree in Medical Records, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Background: Given that artificial intelligence (AI) is a newly emerging field transforming the practice of medicine, the end-user perspective is of paramount importance for its success and acceptance.
 
Objectives: This systematic review aimed to capture an overview of qualitative and quantitative surveys related to patients' opinions on the use of AI within healthcare settings.
 
Methods: In this systematic review, a query was conducted on PubMed for original studies that surveyed patients' opinions using qualitative and quantitative methods. The key inclusion criteria were papers assessing patient viewpoints assessed by interviews and those exploring opinions via questionnaires. The data extraction process involved collaborative analysis to ensure reliability.
 
Results: This systematic review analyzed 26 studies on patient perspectives of AI in healthcare. The majority of articles used quantitative surveys (65.4%) or qualitative interviews (19.2%), with convenience and purposive sampling being the most common. Cancer patients were the most frequent group studied (26.9%), with research on AI applications in cancer care. The key factors examined in quantitative surveys were prior AI exposure, perceptions of the advantages/drawbacks of AI, and privacy/trust concerns. Qualitative studies focused on AI knowledge, usage barriers, benefits, and facilitators.
 
Conclusion: This literature review examined how demographic factors, trust, and knowledge impact patient perspectives on integrating AI in healthcare. The obtained results highlighted the need for educational initiatives to address knowledge gaps and facilitate the smooth integration of AI-powered solutions, leveraging their potential to enhance patient care and service delivery. 
 

Keywords


1. Barrett, M., J. Boyne, J. Brandts, H.-P. Brunner-La Rocca, L. De Maesschalck, K. De Wit, et al., Artificial intelligence supported patient self-care in chronic heart failure: a paradigm shift from reactive to predictive, preventive and personalised care. EPMA J, 2019. 10: p. 445-464 DOI: 10.1007/s13167-019-00188-9. [PubMed: 31832118].
https://doi.org/10.1007/s13167-019-00188-9
PMid:31832118 PMCid:PMC6882991
 
2. Al Kuwaiti, A., K. Nazer, A. Al-Reedy, S. Al-Shehri, A. Al-Muhanna, A.V. Subbarayalu, et al., A review of the role of artificial intelligence in healthcare. JJ Pers Med, 2023. 13(6): p. 951 DOI: 10.3390/jpm13060951. [PubMed: 37373940].
https://doi.org/10.3390/jpm13060951
PMid:37373940 PMCid:PMC10301994
 
3. Ansari, R., M. Harris, H. Hosseinzadeh and N. Zwar, Application of Artificial Intelligence in Assessing the Self-Management Practices of Patients with Type 2 Diabetes. Healthcare (Basel), 2023, 11, 903. 2023. DOI: 10.3390/healthcare11060903. [PubMed: 36981560].
https://doi.org/10.3390/healthcare11060903
PMid:36981560 PMCid:PMC10048183
 
4. McCradden, M.D., T. Sarker and P.A. Paprica, Conditionally positive: a qualitative study of public perceptions about using health data for artificial intelligence research. BMJ open, 2020. 10(10): p. e039798. DOI: 10.1136/bmjopen-2020-039798. [PubMed: 33115901].
https://doi.org/10.1136/bmjopen-2020-039798
PMid:33115901 PMCid:PMC7594363
 
5. Richardson, J.P., S. Curtis, C. Smith, J. Pacyna, X. Zhu, B. Barry, et al., A framework for examining patient attitudes regarding applications of artificial intelligence in healthcare. Digit Health, 2022. 8: p. 20552076221089084. DOI: 10.1177/20552076221089084. [PubMed: 35355806].
https://doi.org/10.1177/20552076221089084
PMid:35355806 PMCid:PMC8958674
 
6. Thai, K., K.H. Tsiandoulas, E.A. Stephenson, D. Menna-Dack, R. Zlotnik Shaul, J.A. Anderson, et al., Perspectives of Youths on the Ethical Use of Artificial Intelligence in Health Care Research and Clinical Care. JAMA network open, 2023. 6(5): p. e2310659. DOI: 10.1001/jamanetworkopen.2023.10659. [PubMed: 37126349]
https://doi.org/10.1001/jamanetworkopen.2023.10659
PMid:37126349 PMCid:PMC10152306
 
7. Street, J., H. Barrie, J. Eliott, L. Carolan, F. McCorry, A. Cebulla, et al., Older Adults' Perspectives of Smart Technologies to Support Aging at Home: Insights from Five World Café Forums. International journal of environmental research and public health, 2022. 19(13). DOI: 10.3390/ijerph19137817. [PubMed: 35805477].
https://doi.org/10.3390/ijerph19137817
PMid:35805477 PMCid:PMC9266000
 
8. Wang, S., K. Bolling, W. Mao, J. Reichstadt, D. Jeste, H.C. Kim, et al., Technology to Support Aging in Place: Older Adults' Perspectives. Healthcare (Basel), 2019. 7(2).10.3390/healthcare7020060.Pmc6627975. DOI: 10.3390/healthcare7020060. [PubMed: 30974780].
https://doi.org/10.3390/healthcare7020060
PMid:30974780 PMCid:PMC6627975
 
9. Loi, S.M., A. Bennett, M. Pearce, K. Nguyen, N.T. Lautenschlager, R. Khosla, et al., A pilot study exploring staff acceptability of a socially assistive robot in a residential care facility that accommodates people under 65 years old. Int Psychogeriatr, 2018. 30(7): p. 1075-1080 DOI: 10.1017/S1041610217002617. [PubMed: 29198225].
https://doi.org/10.1017/S1041610217002617
PMid:29198225
 
10. Whelan, S., K. Murphy, E. Barrett, C. Krusche, A. Santorelli and D. Casey, Factors Affecting the Acceptability of Social Robots by Older Adults Including People with Dementia or Cognitive Impairment: A Literature Review. IInt J Soc Robot, 2018. 10(5): p. 643-668. DOI: 10.1007/s12369-018-0471-x.
https://doi.org/10.1007/s12369-018-0471-x
 
11. Koohjani, Z., M. Momeni and A. Saki, End Users' Prospective Assessment Model for Artificial Intelligence (AI) Applications: A Systematic Review. Razavi International Journal of Medicine, 2024. 12(1): p. 1-9 DOI: 10.30483/rijm.2024.254504.1309.
 
12. Gonsard, A., R. AbouTaam, B. Prévost, C. Roy, A. Hadchouel, N. Nathan, et al., Children's views on artificial intelligence and digital twins for the daily management of their asthma: a mixed-method study. Eur J Pediatr, 2023. 182(2): p. 877-888. DOI: 10.1007/s00431-022-04754-8. [PubMed: 36512148].
https://doi.org/10.1007/s00431-022-04754-8
PMid:36512148 PMCid:PMC9745267
 
13. Tran, V.T., C. Riveros and P. Ravaud, Patients' views of wearable devices and AI in healthcare: findings from the ComPaRe e-cohort. NPJ Digit Med, 2019. 2: p. 53. DOI: 10.1038/s41746-019-0132-y. [PubMed: 31304399].
https://doi.org/10.1038/s41746-019-0132-y
PMid:31304399 PMCid:PMC6572821
 
14. Parry, M.W., J.S. Markowitz, C.M. Nordberg, A. Patel, W.H. Bronson and E.M. DelSole, Patient Perspectives on Artificial Intelligence in Healthcare Decision Making: A Multi-Center Comparative Study. Indian J Orthop, 2023. 57(5): p. 653-665. DOI: 10.1007/s43465-023-00845-2. [PubMed: 37122674].
https://doi.org/10.1007/s43465-023-00845-2
PMid:37122674 PMCid:PMC9979110
 
15. Nadarzynski, T., V. Puentes, I. Pawlak, T. Mendes, I. Montgomery, J. Bayley, et al., Barriers and facilitators to engagement with artificial intelligence (AI)-based chatbots for sexual and reproductive health advice: a qualitative analysis. Sex Health, 2021. 18(5): p. 385-393. DOI: 10.1071/SH21123. [PubMed: 34782055].
https://doi.org/10.1071/SH21123
PMid:34782055
 
16. Svendsen, M.J., BI. Nicholl, F.S. Mair, K. Wood, C.D.N. Rasmussen and M.J. Stochkendahl, One size does not fit all: Participants' experiences of the selfBACK app to support self-management of low back pain-a qualitative interview study. Randomized Controlled Trial, 2022. 30(1): p. 41. DOI: 10.1186/s12998-022-00452-2 . [PubMed: 36192724].
https://doi.org/10.1186/s12998-022-00452-2
PMid:36192724 PMCid:PMC9531397
 
17. Haan, M., Y.P. Ongena, S. Hommes, T.C. Kwee and D. Yakar, A Qualitative Study to Understand Patient Perspective on the Use of Artificial Intelligence in Radiology. J Am Coll Radiol, 2019. 16(10): p. 1416-1419.. DOI: 10.1016/j.jacr.2018.12.043. [PubMed: 30878311].
https://doi.org/10.1016/j.jacr.2018.12.043
PMid:30878311
 
18. Couture, V., M.C. Roy, E. Dez, S. Laperle and J.C. Bélisle-Pipon, Ethical Implications of Artificial Intelligence in Population Health and the Public's Role in Its Governance: Perspectives From a Citizen and Expert Panel. J Med Internet Res, 202325: p. e44357. DOI: 10.2196/44357. [PubMed: 37104026].
https://doi.org/10.2196/44357
PMid:37104026 PMCid:PMC10176139
 
19. Aggarwal, R., S. Farag, G. Martin, H. Ashrafian and A. Darzi, Patient Perceptions on Data Sharing and Applying Artificial Intelligence to Health Care Data: Cross-sectional Survey. J Med Internet Res, 2021. 23(8): p. e26162. DOI: 10.2196/26162. [PubMed: 34236994].
https://doi.org/10.2196/26162
PMid:34236994 PMCid:PMC8430862
 
20. Fritsch, S.J., A. Blankenheim, A. Wahl, P. Hetfeld, O. Maassen, S. Deffge, et al., Attitudes and perception of artificial intelligence in healthcare: A cross-sectional survey among patients. Digit Health, 2022. 8: p. 20552076221116772.. DOI: 10.1177/20552076221116772. [PubMed: 35983102].
https://doi.org/10.1177/20552076221116772
PMid:35983102 PMCid:PMC9380417
 
21. Van der Zander, Q.E.W., MCM van der Ende-van Loon, J.M.M. Janssen, B. Winkens, F. van der Sommen, A.A.M. Masclee, et al., Artificial intelligence in (gastrointestinal) healthcare: patients' and physicians' perspectives. Sci Rep, 2022. 12(1): p. 16779. DOI: 10.1038/s41598-022-20958-2. [PubMed: 36202957].
https://doi.org/10.1038/s41598-022-20958-2
PMid:36202957 PMCid:PMC9537305
 
22. Kim, K.H., K.J. Hong, S.D. Shin, Y.S. Ro, K.J. Song, T.H. Kim, et al., How do people think about the implementation of speech and video recognition technology in emergency medical practice? PloS one, 2022. 17(9): p. e0275280. DOI: 10.1371/journal.pone.0275280. [PubMed: 36149899].
https://doi.org/10.1371/journal.pone.0275280
PMid:36149899 PMCid:PMC9506645
 
23. Jutzi, T.B., E.I. Krieghoff-Henning, T. Holland-Letz, J.S. Utikal, A. Hauschild, D. Schadendorf, et al., Artificial Intelligence in Skin Cancer Diagnostics: The Patients' Perspective. Front Med (Lausanne), 2020. 7: p. 233. DOI: 10.3389/fmed.2020.00233. [PubMed: 32671078].
https://doi.org/10.3389/fmed.2020.00233
PMid:32671078 PMCid:PMC7326111
 
24. Meyer, A.N.D., TD. Giardina, C. Spitzmueller, U. Shahid, T.M.T. Scott and H. Singh, Patient Perspectives on the Usefulness of an Artificial Intelligence-Assisted Symptom Checker: Cross-Sectional Survey Study. Med Internet Re, 2020. 22(1): p. e1467. DOI: 10.2196/14679. [PubMed: 32012052].
https://doi.org/10.2196/14679
PMid:32012052 PMCid:PMC7055765
 
25. Armero, W., K.J. Gray, K.G. Fields, NM. Cole, D.W. Bates and V.P. Kovacheva, A survey of pregnant patients' perspectives on the implementation of artificial intelligence in clinical care. J Am Med Inform Assoc. 2022. 30(1): p. 46-53. DOI: 10.1093/jamia/ocac200. [PubMed: 36250788].
https://doi.org/10.1093/jamia/ocac200
PMid:36250788 PMCid:PMC9748543
 
26. Nadarzynski, T., J. Bayley, C. Llewellyn, S. Kidsley and C.A. Graham, Acceptability of artificial intelligence (AI)-enabled chatbots, video consultations and live webchats as online platforms for sexual health advice. BMJ Sex Reprod Health, 2020. 46(3): p. 210-217. DOI: 10.1136/bmjsrh-2018-200271. [PubMed: 31964779].
https://doi.org/10.1136/bmjsrh-2018-200271
PMid:31964779
 
27. Yang, K., Z. Zeng, H. Peng and Y. Jiang, Attitudes Of Chinese Cancer Patients Toward The Clinical Use Of Artificial Intelligence. Patient Prefer Adherence, 2019. 13: p. 1867-1875. DOI: 10.2147/PPA.S225952. [PubMed: 31802856].
https://doi.org/10.2147/PPA.S225952
PMid:31802856 PMCid:PMC6830378
 
28. Palmisciano, P., A.A.B. Jamjoom, D. Taylor, D. Stoyanov and H.J. Marcus, Attitudes of Patients and Their Relatives Toward Artificial Intelligence in Neurosurgery. World Neurosurg, 2020. 138: p. e627-e633. DOI: 10.1016/j.wneu.2020.03.029. [PubMed: 32179185].
https://doi.org/10.1016/j.wneu.2020.03.029
PMid:32179185
 
29. Kosan, E., J. Krois, K. Wingenfeld, C.E. Deuter, R. Gaudin and F. Schwendicke, Patients' Perspectives on Artificial Intelligence in Dentistry: A Controlled Study. J Clin Med, 2022. 11(8). DOI: 10.3390/jcm11082143. PubMed: 35456236].
https://doi.org/10.3390/jcm11082143
PMid:35456236 PMCid:PMC9032784
 
30. Lee, K. and S.H. Lee, Artificial Intelligence-Driven Oncology Clinical Decision Support System for Multidisciplinary Teams. Sensors (Basel), 2020. 20(17). DOI: 10.3390/s20174693. [PubMed: 32825296].
https://doi.org/10.3390/s20174693
PMid:32825296 PMCid:PMC7506616
 
31. Ayad, N., F. Schwendicke, J. Krois, S. van den Bosch, S. Bergé, L. Bohner, et al., Patients' perspectives on the use of artificial intelligence in dentistry: a regional survey. Head Face Med, 2023. 19(1): p. 23. DOI: 10.1186/s13005-023-00368-z. [PubMed: 37349791].
https://doi.org/10.1186/s13005-023-00368-z
PMid:37349791 PMCid:PMC10288769
 
32. Pelly, M., F. Fatehi, D. Liew and A. Verdejo-Garcia, Artificial intelligence for secondary prevention of myocardial infarction: A qualitative study of patient and health professional perspectives. Int J Med Inform, 2023. 173: p. 105041. DOI: 10.1016/j.ijmedinf.2023.105041. [PubMed: 36934609].
https://doi.org/10.1016/j.ijmedinf.2023.105041
PMid:36934609
 
33. Ibba, S., C. Tancredi, A. Fantesini, M. Cellina, R. Presta, R. Montanari, et al., How do patients perceive the AI-radiologists interaction? Results of a survey on 2119 responders. Eur J Radiol, 2023. 165: p. 110917. DOI: 10.1016/j.ejrad.2023.110917 . [PubMed: 37327548].
https://doi.org/10.1016/j.ejrad.2023.110917
PMid:37327548
 
34. Temple, S., C. Rowbottom and J. Simpson, Patient views on the implementation of artificial intelligence in radiotherapy. Radiography (Lond), 2023. Suppl 1: p. S112-s116. DOI: 10.1016/j.radi.2023.03.006 . [PubMed: 36964044].
https://doi.org/10.1016/j.radi.2023.03.006
PMid:36964044
 
35. Pesapane, F., A. Rotili, E. Valconi, G.M. Agazzi, M. Montesano, S. Penco, et al., Women's perceptions and attitudes to the use of AI in breast cancer screening: a survey in a cancer referral centre. Br J Radiol, 2023. 96(1141): p. 20220569. DOI: 10.1259/bjr.20220569. [PubMed: 36314388].
https://doi.org/10.1259/bjr.20220569
PMid:36314388
 
36. Nelson, C.A., L.M. Pérez-Chada, A. Creadore, S.J. Li, K. Lo, P. Manjaly, et al., Patient Perspectives on the Use of Artificial Intelligence for Skin Cancer Screening: A Qualitative Study. JAMA Dermatol, 2020. 156(5): p. 501-512. DOI: 10.1001/jamadermatol.2019.5014 [PubMed: 32159733].
https://doi.org/10.1001/jamadermatol.2019.5014
PMid:32159733 PMCid:PMC7066525
 
37. Palinkas, L.A., S.M. Horwitz, C.A. Green, J.P. Wisdom, N. Duan and K. Hoagwood, Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Adm Policy Ment Health, 2015. 42: p. 533-544 DOI: 10.1007/s10488-013-0528-y. [PubMed: 24193818].
https://doi.org/10.1007/s10488-013-0528-y
PMid:24193818 PMCid:PMC4012002
 
38. Zazpe, I., S. Santiago, C. De la Fuente-Arrillaga, J.M. Nuñez-Córdoba, M. Bes-Rastrollo and M.A. Martínez-González, based versus web-based versions of self-administered questionnaires, including food-frequency questionnaires: prospective cohort study. JMIR Public Health Surveill, 2019. 5(4): p. e11997 DOI: 10.2196/11997 . [PubMed: 31573924].
https://doi.org/10.2196/11997
PMid:31573924 PMCid:PMC6774237
 
39. Regnault, A., T. Willgoss, S. Barbic and I.S.f.Q.o.L.R.M.M.S.I. Group, Towards the use of mixed methods inquiry as best practice in health outcomes research. J Patient Rep Outcomes, 2018. 2(1): p. 19 DOI: 10.1186/s41687-018-0043-8 . [PubMed: 29757311].
https://doi.org/10.1186/s41687-018-0043-8
PMid:29757311 PMCid:PMC5934918
 
40. Marutha, N.S. and M. Modiba, Application of Mixed Method Research in Studying the Use of Artificial Intelligence for the Management of Records, in Handbook of Research on Mixed Methods Research in Information Science. 2022, IGI Global. p. 495-509. DOI: 10.4018/978-1-7998-8844-4.ch023.
https://doi.org/10.4018/978-1-7998-8844-4.ch023
 
41. Bohr, A. and K. Memarzadeh, The rise of artificial intelligence in healthcare applications, in Artificial Intelligence in healthcare. 2020, Elsevier. p. 25-60. DOI: 10.1016/B978-0-12-818438-7.00002-2.
https://doi.org/10.1016/B978-0-12-818438-7.00002-2
 
42. Makwana, N., Public health care system's preparedness to combat epidemics after natural disasters. J Family Med Prim Care, 2020. 9(10): p. 5107-5112 DOI: 10.4103/jfmpc.jfmpc_895_19 [PubMed: 33409172].
https://doi.org/10.4103/jfmpc.jfmpc_895_19
PMid:33409172 PMCid:PMC7773099
 
43. Foffano, F., T. Scantamburlo and A. Cortés, Investing in AI for social good: an analysis of European national strategies. AI Soc, 2023. 38(2): p. 479-500 DOI: 10.1007/s00146-022-01445-8 [PubMed: 35528248].
https://doi.org/10.1007/s00146-022-01445-8
PMid:35528248 PMCid:PMC9068863
 
44. There are holes in Europe's AI Act - and researchers can help to fill them. Nature, 2024. 625(7994): p. 216.10.1038/d41586-024-00029-4. DOI: 10.1038/d41586-024-00029-4. [PubMed: 38200306].
https://doi.org/10.1038/d41586-024-00029-4
PMid:38200306
 
45. Meszaros, J., J. Minari and I. Huys, The future regulation of artificial intelligence systems in healthcare services and medical research in the European Union. Frontiers in Genetics, 2022. 13: p. 927721. DOI: 10.3389/fgene.2022.927721.
https://doi.org/10.3389/fgene.2022.927721
PMid:36267404 PMCid:PMC9576843
 
46. Robertson, C., A. Woods, K. Bergstrand, J. Findley, C. Balser and M.J. Slepian, Diverse patients' attitudes towards artificial intelligence (AI) in diagnosis. PLOS Digit Health, 2023. 2(5): p. e0000237. DOI: 10.1371/journal.pdig.0000237.
https://doi.org/10.1371/journal.pdig.0000237
PMid:37205713 PMCid:PMC10198520
 
47. Young, A.T., D. Amara, A. Bhattacharya and M.L. Wei, Patient and general public attitudes towards clinical artificial intelligence: a mixed methods systematic review. Lancet Digit Health, 2021. 3(9): p. e599-e611 DOI: 10.1016/S2589-7500(21)00132-1 [PubMed: 34446266].
https://doi.org/10.1016/S2589-7500(21)00132-1
PMid:34446266
 
48. Fritsch, S.J., A. Blankenheim, A. Wahl, P. Hetfeld, O. Maassen, S. Deffge, et al., Attitudes and perception of artificial intelligence in healthcare: A cross-sectional survey among patients. Digit Health, 2022. 8: p. 20552076221116772. DOI: 10.1177/20552076221116772. [PubMed: 35983102].
https://doi.org/10.1177/20552076221116772
PMid:35983102 PMCid:PMC9380417
 
49. Wood, EA, B.L. Ange and D.D. Miller, Are we ready to integrate artificial intelligence literacy into medical school curriculum: students and faculty survey. J Med Educ Curric Dev, 2021. 8: p. 23821205211024078 DOI: 10.1177/23821205211024078 . [PubMed: 34250242].
https://doi.org/10.1177/23821205211024078
PMid:34250242 PMCid:PMC8239949
 
50. Van Brummelen, J., T. Heng and V. Tabunshchyk. Teaching tech to talk: K-12 conversational artificial intelligence literacy curriculum and development tools. in Proceedings of the AAAI Conference on Artificial Intelligence. 2021. DOI: 10.1609/aaai.v35i17.17844 .
https://doi.org/10.1609/aaai.v35i17.17844
 
51. Chew, HSJ and P. Achananuparp, Perceptions and needs of artificial intelligence in health care to increase adoption: scoping review. J Med Internet Res, 2022. 24(1): p. e32939 DOI: 10.2196/32939. [PubMed: 35029538].
https://doi.org/10.2196/32939
PMid:35029538 PMCid:PMC8800095