Document Type : Review Article/ Systematic Review Article/ Meta Analysis
Authors
1 MSc in Medical Informatics, Health Information Technologies Unit of Economic Health Department, Mashhad University of Medical Sciences, Mashhad, Iran
2 Bachelor degree in Medical Records, Mashhad University of Medical Sciences, Mashhad, Iran
3 Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Abstract
Keywords
1. Barrett, M., J. Boyne, J. Brandts, H.-P. Brunner-La Rocca, L. De Maesschalck, K. De Wit, et al., Artificial intelligence supported patient self-care in chronic heart failure: a paradigm shift from reactive to predictive, preventive and personalised care. EPMA J, 2019. 10: p. 445-464 DOI: 10.1007/s13167-019-00188-9. [PubMed: 31832118]. https://doi.org/10.1007/s13167-019-00188-9 PMid:31832118 PMCid:PMC6882991 |
||||
2. Al Kuwaiti, A., K. Nazer, A. Al-Reedy, S. Al-Shehri, A. Al-Muhanna, A.V. Subbarayalu, et al., A review of the role of artificial intelligence in healthcare. JJ Pers Med, 2023. 13(6): p. 951 DOI: 10.3390/jpm13060951. [PubMed: 37373940]. https://doi.org/10.3390/jpm13060951 PMid:37373940 PMCid:PMC10301994 |
||||
3. Ansari, R., M. Harris, H. Hosseinzadeh and N. Zwar, Application of Artificial Intelligence in Assessing the Self-Management Practices of Patients with Type 2 Diabetes. Healthcare (Basel), 2023, 11, 903. 2023. DOI: 10.3390/healthcare11060903. [PubMed: 36981560]. https://doi.org/10.3390/healthcare11060903 PMid:36981560 PMCid:PMC10048183 |
||||
4. McCradden, M.D., T. Sarker and P.A. Paprica, Conditionally positive: a qualitative study of public perceptions about using health data for artificial intelligence research. BMJ open, 2020. 10(10): p. e039798. DOI: 10.1136/bmjopen-2020-039798. [PubMed: 33115901]. https://doi.org/10.1136/bmjopen-2020-039798 PMid:33115901 PMCid:PMC7594363 |
||||
5. Richardson, J.P., S. Curtis, C. Smith, J. Pacyna, X. Zhu, B. Barry, et al., A framework for examining patient attitudes regarding applications of artificial intelligence in healthcare. Digit Health, 2022. 8: p. 20552076221089084. DOI: 10.1177/20552076221089084. [PubMed: 35355806]. https://doi.org/10.1177/20552076221089084 PMid:35355806 PMCid:PMC8958674 |
||||
6. Thai, K., K.H. Tsiandoulas, E.A. Stephenson, D. Menna-Dack, R. Zlotnik Shaul, J.A. Anderson, et al., Perspectives of Youths on the Ethical Use of Artificial Intelligence in Health Care Research and Clinical Care. JAMA network open, 2023. 6(5): p. e2310659. DOI: 10.1001/jamanetworkopen.2023.10659. [PubMed: 37126349] https://doi.org/10.1001/jamanetworkopen.2023.10659 PMid:37126349 PMCid:PMC10152306 |
||||
7. Street, J., H. Barrie, J. Eliott, L. Carolan, F. McCorry, A. Cebulla, et al., Older Adults' Perspectives of Smart Technologies to Support Aging at Home: Insights from Five World Café Forums. International journal of environmental research and public health, 2022. 19(13). DOI: 10.3390/ijerph19137817. [PubMed: 35805477]. https://doi.org/10.3390/ijerph19137817 PMid:35805477 PMCid:PMC9266000 |
||||
8. Wang, S., K. Bolling, W. Mao, J. Reichstadt, D. Jeste, H.C. Kim, et al., Technology to Support Aging in Place: Older Adults' Perspectives. Healthcare (Basel), 2019. 7(2).10.3390/healthcare7020060.Pmc6627975. DOI: 10.3390/healthcare7020060. [PubMed: 30974780]. https://doi.org/10.3390/healthcare7020060 PMid:30974780 PMCid:PMC6627975 |
||||
9. Loi, S.M., A. Bennett, M. Pearce, K. Nguyen, N.T. Lautenschlager, R. Khosla, et al., A pilot study exploring staff acceptability of a socially assistive robot in a residential care facility that accommodates people under 65 years old. Int Psychogeriatr, 2018. 30(7): p. 1075-1080 DOI: 10.1017/S1041610217002617. [PubMed: 29198225]. https://doi.org/10.1017/S1041610217002617 PMid:29198225 |
||||
10. Whelan, S., K. Murphy, E. Barrett, C. Krusche, A. Santorelli and D. Casey, Factors Affecting the Acceptability of Social Robots by Older Adults Including People with Dementia or Cognitive Impairment: A Literature Review. IInt J Soc Robot, 2018. 10(5): p. 643-668. DOI: 10.1007/s12369-018-0471-x. https://doi.org/10.1007/s12369-018-0471-x |
||||
11. Koohjani, Z., M. Momeni and A. Saki, End Users' Prospective Assessment Model for Artificial Intelligence (AI) Applications: A Systematic Review. Razavi International Journal of Medicine, 2024. 12(1): p. 1-9 DOI: 10.30483/rijm.2024.254504.1309. | ||||
12. Gonsard, A., R. AbouTaam, B. Prévost, C. Roy, A. Hadchouel, N. Nathan, et al., Children's views on artificial intelligence and digital twins for the daily management of their asthma: a mixed-method study. Eur J Pediatr, 2023. 182(2): p. 877-888. DOI: 10.1007/s00431-022-04754-8. [PubMed: 36512148]. https://doi.org/10.1007/s00431-022-04754-8 PMid:36512148 PMCid:PMC9745267 |
||||
13. Tran, V.T., C. Riveros and P. Ravaud, Patients' views of wearable devices and AI in healthcare: findings from the ComPaRe e-cohort. NPJ Digit Med, 2019. 2: p. 53. DOI: 10.1038/s41746-019-0132-y. [PubMed: 31304399]. https://doi.org/10.1038/s41746-019-0132-y PMid:31304399 PMCid:PMC6572821 |
||||
14. Parry, M.W., J.S. Markowitz, C.M. Nordberg, A. Patel, W.H. Bronson and E.M. DelSole, Patient Perspectives on Artificial Intelligence in Healthcare Decision Making: A Multi-Center Comparative Study. Indian J Orthop, 2023. 57(5): p. 653-665. DOI: 10.1007/s43465-023-00845-2. [PubMed: 37122674]. https://doi.org/10.1007/s43465-023-00845-2 PMid:37122674 PMCid:PMC9979110 |
||||
15. Nadarzynski, T., V. Puentes, I. Pawlak, T. Mendes, I. Montgomery, J. Bayley, et al., Barriers and facilitators to engagement with artificial intelligence (AI)-based chatbots for sexual and reproductive health advice: a qualitative analysis. Sex Health, 2021. 18(5): p. 385-393. DOI: 10.1071/SH21123. [PubMed: 34782055]. https://doi.org/10.1071/SH21123 PMid:34782055 |
||||
16. Svendsen, M.J., BI. Nicholl, F.S. Mair, K. Wood, C.D.N. Rasmussen and M.J. Stochkendahl, One size does not fit all: Participants' experiences of the selfBACK app to support self-management of low back pain-a qualitative interview study. Randomized Controlled Trial, 2022. 30(1): p. 41. DOI: 10.1186/s12998-022-00452-2 . [PubMed: 36192724]. https://doi.org/10.1186/s12998-022-00452-2 PMid:36192724 PMCid:PMC9531397 |
||||
17. Haan, M., Y.P. Ongena, S. Hommes, T.C. Kwee and D. Yakar, A Qualitative Study to Understand Patient Perspective on the Use of Artificial Intelligence in Radiology. J Am Coll Radiol, 2019. 16(10): p. 1416-1419.. DOI: 10.1016/j.jacr.2018.12.043. [PubMed: 30878311]. https://doi.org/10.1016/j.jacr.2018.12.043 PMid:30878311 |
||||
18. Couture, V., M.C. Roy, E. Dez, S. Laperle and J.C. Bélisle-Pipon, Ethical Implications of Artificial Intelligence in Population Health and the Public's Role in Its Governance: Perspectives From a Citizen and Expert Panel. J Med Internet Res, 202325: p. e44357. DOI: 10.2196/44357. [PubMed: 37104026]. https://doi.org/10.2196/44357 PMid:37104026 PMCid:PMC10176139 |
||||
19. Aggarwal, R., S. Farag, G. Martin, H. Ashrafian and A. Darzi, Patient Perceptions on Data Sharing and Applying Artificial Intelligence to Health Care Data: Cross-sectional Survey. J Med Internet Res, 2021. 23(8): p. e26162. DOI: 10.2196/26162. [PubMed: 34236994]. https://doi.org/10.2196/26162 PMid:34236994 PMCid:PMC8430862 |
||||
20. Fritsch, S.J., A. Blankenheim, A. Wahl, P. Hetfeld, O. Maassen, S. Deffge, et al., Attitudes and perception of artificial intelligence in healthcare: A cross-sectional survey among patients. Digit Health, 2022. 8: p. 20552076221116772.. DOI: 10.1177/20552076221116772. [PubMed: 35983102]. https://doi.org/10.1177/20552076221116772 PMid:35983102 PMCid:PMC9380417 |
||||
21. Van der Zander, Q.E.W., MCM van der Ende-van Loon, J.M.M. Janssen, B. Winkens, F. van der Sommen, A.A.M. Masclee, et al., Artificial intelligence in (gastrointestinal) healthcare: patients' and physicians' perspectives. Sci Rep, 2022. 12(1): p. 16779. DOI: 10.1038/s41598-022-20958-2. [PubMed: 36202957]. https://doi.org/10.1038/s41598-022-20958-2 PMid:36202957 PMCid:PMC9537305 |
||||
22. Kim, K.H., K.J. Hong, S.D. Shin, Y.S. Ro, K.J. Song, T.H. Kim, et al., How do people think about the implementation of speech and video recognition technology in emergency medical practice? PloS one, 2022. 17(9): p. e0275280. DOI: 10.1371/journal.pone.0275280. [PubMed: 36149899]. https://doi.org/10.1371/journal.pone.0275280 PMid:36149899 PMCid:PMC9506645 |
||||
23. Jutzi, T.B., E.I. Krieghoff-Henning, T. Holland-Letz, J.S. Utikal, A. Hauschild, D. Schadendorf, et al., Artificial Intelligence in Skin Cancer Diagnostics: The Patients' Perspective. Front Med (Lausanne), 2020. 7: p. 233. DOI: 10.3389/fmed.2020.00233. [PubMed: 32671078]. https://doi.org/10.3389/fmed.2020.00233 PMid:32671078 PMCid:PMC7326111 |
||||
24. Meyer, A.N.D., TD. Giardina, C. Spitzmueller, U. Shahid, T.M.T. Scott and H. Singh, Patient Perspectives on the Usefulness of an Artificial Intelligence-Assisted Symptom Checker: Cross-Sectional Survey Study. Med Internet Re, 2020. 22(1): p. e1467. DOI: 10.2196/14679. [PubMed: 32012052]. https://doi.org/10.2196/14679 PMid:32012052 PMCid:PMC7055765 |
||||
25. Armero, W., K.J. Gray, K.G. Fields, NM. Cole, D.W. Bates and V.P. Kovacheva, A survey of pregnant patients' perspectives on the implementation of artificial intelligence in clinical care. J Am Med Inform Assoc. 2022. 30(1): p. 46-53. DOI: 10.1093/jamia/ocac200. [PubMed: 36250788]. https://doi.org/10.1093/jamia/ocac200 PMid:36250788 PMCid:PMC9748543 |
||||
26. Nadarzynski, T., J. Bayley, C. Llewellyn, S. Kidsley and C.A. Graham, Acceptability of artificial intelligence (AI)-enabled chatbots, video consultations and live webchats as online platforms for sexual health advice. BMJ Sex Reprod Health, 2020. 46(3): p. 210-217. DOI: 10.1136/bmjsrh-2018-200271. [PubMed: 31964779]. https://doi.org/10.1136/bmjsrh-2018-200271 PMid:31964779 |
||||
27. Yang, K., Z. Zeng, H. Peng and Y. Jiang, Attitudes Of Chinese Cancer Patients Toward The Clinical Use Of Artificial Intelligence. Patient Prefer Adherence, 2019. 13: p. 1867-1875. DOI: 10.2147/PPA.S225952. [PubMed: 31802856]. https://doi.org/10.2147/PPA.S225952 PMid:31802856 PMCid:PMC6830378 |
||||
28. Palmisciano, P., A.A.B. Jamjoom, D. Taylor, D. Stoyanov and H.J. Marcus, Attitudes of Patients and Their Relatives Toward Artificial Intelligence in Neurosurgery. World Neurosurg, 2020. 138: p. e627-e633. DOI: 10.1016/j.wneu.2020.03.029. [PubMed: 32179185]. https://doi.org/10.1016/j.wneu.2020.03.029 PMid:32179185 |
||||
29. Kosan, E., J. Krois, K. Wingenfeld, C.E. Deuter, R. Gaudin and F. Schwendicke, Patients' Perspectives on Artificial Intelligence in Dentistry: A Controlled Study. J Clin Med, 2022. 11(8). DOI: 10.3390/jcm11082143. PubMed: 35456236]. https://doi.org/10.3390/jcm11082143 PMid:35456236 PMCid:PMC9032784 |
||||
30. Lee, K. and S.H. Lee, Artificial Intelligence-Driven Oncology Clinical Decision Support System for Multidisciplinary Teams. Sensors (Basel), 2020. 20(17). DOI: 10.3390/s20174693. [PubMed: 32825296]. https://doi.org/10.3390/s20174693 PMid:32825296 PMCid:PMC7506616 |
||||
31. Ayad, N., F. Schwendicke, J. Krois, S. van den Bosch, S. Bergé, L. Bohner, et al., Patients' perspectives on the use of artificial intelligence in dentistry: a regional survey. Head Face Med, 2023. 19(1): p. 23. DOI: 10.1186/s13005-023-00368-z. [PubMed: 37349791]. https://doi.org/10.1186/s13005-023-00368-z PMid:37349791 PMCid:PMC10288769 |
||||
32. Pelly, M., F. Fatehi, D. Liew and A. Verdejo-Garcia, Artificial intelligence for secondary prevention of myocardial infarction: A qualitative study of patient and health professional perspectives. Int J Med Inform, 2023. 173: p. 105041. DOI: 10.1016/j.ijmedinf.2023.105041. [PubMed: 36934609]. https://doi.org/10.1016/j.ijmedinf.2023.105041 PMid:36934609 |
||||
33. Ibba, S., C. Tancredi, A. Fantesini, M. Cellina, R. Presta, R. Montanari, et al., How do patients perceive the AI-radiologists interaction? Results of a survey on 2119 responders. Eur J Radiol, 2023. 165: p. 110917. DOI: 10.1016/j.ejrad.2023.110917 . [PubMed: 37327548]. https://doi.org/10.1016/j.ejrad.2023.110917 PMid:37327548 |
||||
34. Temple, S., C. Rowbottom and J. Simpson, Patient views on the implementation of artificial intelligence in radiotherapy. Radiography (Lond), 2023. Suppl 1: p. S112-s116. DOI: 10.1016/j.radi.2023.03.006 . [PubMed: 36964044]. https://doi.org/10.1016/j.radi.2023.03.006 PMid:36964044 |
||||
35. Pesapane, F., A. Rotili, E. Valconi, G.M. Agazzi, M. Montesano, S. Penco, et al., Women's perceptions and attitudes to the use of AI in breast cancer screening: a survey in a cancer referral centre. Br J Radiol, 2023. 96(1141): p. 20220569. DOI: 10.1259/bjr.20220569. [PubMed: 36314388]. https://doi.org/10.1259/bjr.20220569 PMid:36314388 |
||||
36. Nelson, C.A., L.M. Pérez-Chada, A. Creadore, S.J. Li, K. Lo, P. Manjaly, et al., Patient Perspectives on the Use of Artificial Intelligence for Skin Cancer Screening: A Qualitative Study. JAMA Dermatol, 2020. 156(5): p. 501-512. DOI: 10.1001/jamadermatol.2019.5014 [PubMed: 32159733]. https://doi.org/10.1001/jamadermatol.2019.5014 PMid:32159733 PMCid:PMC7066525 |
||||
37. Palinkas, L.A., S.M. Horwitz, C.A. Green, J.P. Wisdom, N. Duan and K. Hoagwood, Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Adm Policy Ment Health, 2015. 42: p. 533-544 DOI: 10.1007/s10488-013-0528-y. [PubMed: 24193818]. https://doi.org/10.1007/s10488-013-0528-y PMid:24193818 PMCid:PMC4012002 |
||||
38. Zazpe, I., S. Santiago, C. De la Fuente-Arrillaga, J.M. Nuñez-Córdoba, M. Bes-Rastrollo and M.A. Martínez-González, based versus web-based versions of self-administered questionnaires, including food-frequency questionnaires: prospective cohort study. JMIR Public Health Surveill, 2019. 5(4): p. e11997 DOI: 10.2196/11997 . [PubMed: 31573924]. https://doi.org/10.2196/11997 PMid:31573924 PMCid:PMC6774237 |
||||
39. Regnault, A., T. Willgoss, S. Barbic and I.S.f.Q.o.L.R.M.M.S.I. Group, Towards the use of mixed methods inquiry as best practice in health outcomes research. J Patient Rep Outcomes, 2018. 2(1): p. 19 DOI: 10.1186/s41687-018-0043-8 . [PubMed: 29757311]. https://doi.org/10.1186/s41687-018-0043-8 PMid:29757311 PMCid:PMC5934918 |
||||
40. Marutha, N.S. and M. Modiba, Application of Mixed Method Research in Studying the Use of Artificial Intelligence for the Management of Records, in Handbook of Research on Mixed Methods Research in Information Science. 2022, IGI Global. p. 495-509. DOI: 10.4018/978-1-7998-8844-4.ch023. https://doi.org/10.4018/978-1-7998-8844-4.ch023 |
||||
41. Bohr, A. and K. Memarzadeh, The rise of artificial intelligence in healthcare applications, in Artificial Intelligence in healthcare. 2020, Elsevier. p. 25-60. DOI: 10.1016/B978-0-12-818438-7.00002-2. https://doi.org/10.1016/B978-0-12-818438-7.00002-2 |
||||
42. Makwana, N., Public health care system's preparedness to combat epidemics after natural disasters. J Family Med Prim Care, 2020. 9(10): p. 5107-5112 DOI: 10.4103/jfmpc.jfmpc_895_19 [PubMed: 33409172]. https://doi.org/10.4103/jfmpc.jfmpc_895_19 PMid:33409172 PMCid:PMC7773099 |
||||
43. Foffano, F., T. Scantamburlo and A. Cortés, Investing in AI for social good: an analysis of European national strategies. AI Soc, 2023. 38(2): p. 479-500 DOI: 10.1007/s00146-022-01445-8 [PubMed: 35528248]. https://doi.org/10.1007/s00146-022-01445-8 PMid:35528248 PMCid:PMC9068863 |
||||
44. There are holes in Europe's AI Act - and researchers can help to fill them. Nature, 2024. 625(7994): p. 216.10.1038/d41586-024-00029-4. DOI: 10.1038/d41586-024-00029-4. [PubMed: 38200306]. https://doi.org/10.1038/d41586-024-00029-4 PMid:38200306 |
||||
45. Meszaros, J., J. Minari and I. Huys, The future regulation of artificial intelligence systems in healthcare services and medical research in the European Union. Frontiers in Genetics, 2022. 13: p. 927721. DOI: 10.3389/fgene.2022.927721. https://doi.org/10.3389/fgene.2022.927721 PMid:36267404 PMCid:PMC9576843 |
||||
46. Robertson, C., A. Woods, K. Bergstrand, J. Findley, C. Balser and M.J. Slepian, Diverse patients' attitudes towards artificial intelligence (AI) in diagnosis. PLOS Digit Health, 2023. 2(5): p. e0000237. DOI: 10.1371/journal.pdig.0000237. https://doi.org/10.1371/journal.pdig.0000237 PMid:37205713 PMCid:PMC10198520 |
||||
47. Young, A.T., D. Amara, A. Bhattacharya and M.L. Wei, Patient and general public attitudes towards clinical artificial intelligence: a mixed methods systematic review. Lancet Digit Health, 2021. 3(9): p. e599-e611 DOI: 10.1016/S2589-7500(21)00132-1 [PubMed: 34446266]. https://doi.org/10.1016/S2589-7500(21)00132-1 PMid:34446266 |
||||
48. Fritsch, S.J., A. Blankenheim, A. Wahl, P. Hetfeld, O. Maassen, S. Deffge, et al., Attitudes and perception of artificial intelligence in healthcare: A cross-sectional survey among patients. Digit Health, 2022. 8: p. 20552076221116772. DOI: 10.1177/20552076221116772. [PubMed: 35983102]. https://doi.org/10.1177/20552076221116772 PMid:35983102 PMCid:PMC9380417 |
||||
49. Wood, EA, B.L. Ange and D.D. Miller, Are we ready to integrate artificial intelligence literacy into medical school curriculum: students and faculty survey. J Med Educ Curric Dev, 2021. 8: p. 23821205211024078 DOI: 10.1177/23821205211024078 . [PubMed: 34250242]. https://doi.org/10.1177/23821205211024078 PMid:34250242 PMCid:PMC8239949 |
||||
50. Van Brummelen, J., T. Heng and V. Tabunshchyk. Teaching tech to talk: K-12 conversational artificial intelligence literacy curriculum and development tools. in Proceedings of the AAAI Conference on Artificial Intelligence. 2021. DOI: 10.1609/aaai.v35i17.17844 . https://doi.org/10.1609/aaai.v35i17.17844 |
||||
51. Chew, HSJ and P. Achananuparp, Perceptions and needs of artificial intelligence in health care to increase adoption: scoping review. J Med Internet Res, 2022. 24(1): p. e32939 DOI: 10.2196/32939. [PubMed: 35029538]. https://doi.org/10.2196/32939 PMid:35029538 PMCid:PMC8800095 |