Document Type : Review Article/ Systematic Review Article/ Meta Analysis
Authors
1 MSc of Medical Informatics, Health Information Technologies Unit of Economic Health Department, Mashhad University of Medical Sciences, Mashhad, Iran
2 Master of Medical Informatics, Mashhad University of Medical Sciences, Mashhad, Iran
3 Associate Professor of Biostatistics, Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
Abstract
Keywords
1. Floridi, L., J. Cowls, M. Beltrametti, R. Chatila, P. Chazerand, V. Dignum, et al., An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Ethics, governance, and policies in artificial intelligence, 2021: p19-39. DOI: 10.1007/s11023-018-9482-5. [PubMed: 30930541]. https://doi.org/10.1007/s11023-018-9482-5 PMid:30930541 PMCid:PMC6404626 |
||||
2. Wanner, J., L.-V. Herm, K. Heinrich and C. Janiesch, The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study. Electronic markets, 2022. 32(4): p. 2079-2102. DOI: 10.1007/s12525-022-00593-5. https://doi.org/10.1007/s12525-022-00593-5 |
||||
3. Lintz, J., Provider Satisfaction With Artificial Intelligence-Based Hand Hygiene Monitoring System During the COVID-19 Pandemic: Study of a Rural Medical Center. Journal of chiropractic medicine, 2023. DOI:10.1016/j.jcm.2023.03.004. [PubMed: 37360943]. https://doi.org/10.1016/j.jcm.2023.03.004 PMid:37360943 PMCid:PMC10040360 |
||||
4. Santos, J.C., J.H.D. Wong, V. Pallath and K.H. Ng, The perceptions of medical physicists towards relevance and impact of artificial intelligence. Physical and engineering sciences in medicine, 2021. 44(3): p. 833-841. DOI:10.1007/s13246-021-01036-9. [PubMed: 34283393]. https://doi.org/10.1007/s13246-021-01036-9 PMid:34283393 |
||||
5. Li, B., C. de Mestral, M. Mamdani and M. Al-Omran, Perceptions of Canadian vascular surgeons toward artificial intelligence and machine learning. Journal of vascular surgery cases and innovative techniques, 2022. 8(3): p. 466-472. DOI:10.1016/j.jvscit.2022.06.018. [PubMed: 36016703]. https://doi.org/10.1016/j.jvscit.2022.06.018 PMid:36016703 PMCid:PMC9396444 |
||||
6. Yang, Y., J. Luo and T. Lan, An empirical assessment of a modified artificially intelligent device use acceptance model-From the task-oriented perspective. Frontiers in psychology, 2022. 13: p. 975307. DOI: 10.3389/fpsyg.2022.975307. [PubMed: 36017440]. https://doi.org/10.3389/fpsyg.2022.975307 PMid:36017440 PMCid:PMC9396124 |
||||
7. Fujimori, R., K. Liu, S. Soeno, H. Naraba, K. Ogura, K. Hara, et al., Acceptance, Barriers, and Facilitators to Implementing Artificial Intelligence-Based Decision Support Systems in Emergency Departments: Quantitative and Qualitative Evaluation. JMIR formative research, 2022. 6(6): p. e36501. DOI: 10.2196/36501. [PubMed: 35699995]. https://doi.org/10.2196/36501 PMid:35699995 PMCid:PMC9237770 |
||||
8. Grassini, S., Development and validation of the AI attitude scale (AIAS-4): a brief measure of general attitude toward artificial intelligence. Frontiers in psychology, 2023. 14: p. 1191628. DOI: 10.3389/fpsyg.2023.1191628 . [PubMed: 37554139]. https://doi.org/10.3389/fpsyg.2023.1191628 PMid:37554139 PMCid:PMC10406504 |
||||
9. Jussupow, E., K. Spohrer and A. Heinzl, Identity Threats as a Reason for Resistance to Artificial Intelligence: Survey Study With Medical Students and Professionals. JMIR formative research, 2022. 6(3): p. e28750. DOI: 10.2196/28750 . [PubMed: 35319465]. https://doi.org/10.2196/28750 PMid:35319465 PMCid:PMC8987955 |
||||
10. Iancu, I. and B. Iancu, Interacting with chatbots later in life: A technology acceptance perspective in COVID-19 pandemic situation. Frontiers in psychology, 2022. 13: p. 1111003. DOI: 10.3389/fpsyg.2022.1111003 . [PubMed: 36726494]. https://doi.org/10.3389/fpsyg.2022.1111003 PMid:36726494 PMCid:PMC9884968 |
||||
11. Ye, T., J. Xue, M. He, J. Gu, H. Lin, B. Xu, et al., Psychosocial Factors Affecting Artificial Intelligence Adoption in Health Care in China: Cross-Sectional Study. Journal of medical Internet research, 2019. 21(10): p. e14316. DOI: 10.2196/14316 . [PubMed: 31625950]. https://doi.org/10.2196/14316 PMid:31625950 PMCid:PMC6913088 |
||||
12. Sisk, B.A., A.L. Antes, S. Burrous and J.M. DuBois, Parental Attitudes toward Artificial Intelligence-Driven Precision Medicine Technologies in Pediatric Healthcare. Children (Basel, Switzerland), 2020. 7(9).10.3390/children7090145. DOI: 10.3390/children7090145. PubMed: 32962204]. https://doi.org/10.3390/children7090145 PMid:32962204 PMCid:PMC7552627 |
||||
13. Tran, A.Q., L.H. Nguyen, H.S.A. Nguyen, C.T. Nguyen, L.G. Vu, M. Zhang, et al., Determinants of Intention to Use Artificial Intelligence-Based Diagnosis Support System Among Prospective Physicians. Frontiers in public health, 2021. 9: p. 755644. DOI: 10.3389/fpubh.2021.755644 . [PubMed: 34900904]. https://doi.org/10.3389/fpubh.2021.755644 PMid:34900904 PMCid:PMC8661093 |
||||
14. Esmaeilzadeh, P., Use of AI-based tools for healthcare purposes: a survey study from consumers' perspectives. BMC medical informatics and decision making, 2020. 20(1): p. 170. DOI: 10.1186/s12911-020-01191-1 . [PubMed: 32698869]. https://doi.org/10.1186/s12911-020-01191-1 PMid:32698869 PMCid:PMC7376886 |
||||
15. Uzir, M.U.H., H. Al Halbusi, R. Lim, I. Jerin, A.B. Abdul Hamid, T. Ramayah, et al., Applied Artificial Intelligence and user satisfaction: Smartwatch usage for healthcare in Bangladesh during COVID-19. Technol Soc, 2021. 67: p. 101780. DOI:10.1016/j.techsoc.2021.101780. [PubMed: 8528563]. https://doi.org/10.1016/j.techsoc.2021.101780 PMid:34697510 PMCid:PMC8528563 |
||||
16. Aw, K.L., S. Suepiantham, A. Rodriguez, A. Bruce, S. Borooah and P. Cackett, Patients' Perception of Robot-Driven Technology in the Management of Retinal Diseases. Ophthalmology and therapy, 2023. DOI: 10.1007/s40123-023-00762-5 . [PubMed: 37369908]. https://doi.org/10.1007/s40123-023-00762-5 PMid:37369908 PMCid:PMC10442043 |
||||
17. Huo, W., X. Yuan, X. Li, W. Luo, J. Xie and B. Shi, Increasing acceptance of medical AI: The role of medical staff participation in AI development. International journal of medical informatics, 2023. 175: p. 105073. DOI:1 10.1016/j.ijmedinf.2023.105073 . [PubMed: 37119693]. https://doi.org/10.1016/j.ijmedinf.2023.105073 PMid:37119693 PMCid:PMC10125218 |
||||
18. Victor Mugabe, K., Barriers and facilitators to the adoption of artificial intelligence in radiation oncology: A New Zealand study. Technical innovations & patient support in radiation oncology, 2021. 18: p. 16-21. DOI: 10.1016/j.tipsro.2021.03.004 . [PubMed: 33981867]. https://doi.org/10.1016/j.tipsro.2021.03.004 PMid:33981867 PMCid:PMC8085695 |
||||
19. Holdener, M., A. Gut and A. Angerer, Applicability of the User Engagement Scale to Mobile Health: A Survey-Based Quantitative Study. JMIR mHealth and uHealth, 2020. 8(1): p. e13244. DOI:10.2196/13244. [PubMed: 6969386]. https://doi.org/10.2196/13244 PMid:31899454 PMCid:PMC6969386 |
||||
20. Pal, D., P. Roy, C. Arpnikanondt and H. Thapliyal, The effect of trust and its antecedents towards determining users' behavioral intention with voice-based consumer electronic devices. Heliyon, 2022. 8(4): p. e09271. DOI: 10.1016/j.heliyon.2022.e09271 . [PubMed: 35469331]. https://doi.org/10.1016/j.heliyon.2022.e09271 PMid:35469331 PMCid:PMC9034063 |
||||
21. Zhai, H., X. Yang, J. Xue, C. Lavender, T. Ye, J.B. Li, et al., Radiation Oncologists' Perceptions of Adopting an Artificial Intelligence-Assisted Contouring Technology: Model Development and Questionnaire Study. Journal of medical Internet research, 2021. 23(9): p. e27122. DOI: 10.2196/27122 . [PubMed: 34591029]. https://doi.org/10.2196/27122 PMid:34591029 PMCid:PMC8517819 |
||||
22. Li, X., M.Y. Jiang, M.S. Jong, X. Zhang and C.S. Chai, Understanding Medical Students' Perceptions of and Behavioral Intentions toward Learning Artificial Intelligence: A Survey Study. International journal of environmental research and public health, 2022. 19(14). DOI:110.3390/ijerph19148733 . [PubMed: 35886587]. https://doi.org/10.3390/ijerph19148733 PMid:35886587 PMCid:PMC9315694 |
||||
23. Choudhury, A., Factors influencing clinicians' willingness to use an AI-based clinical decision support system. Frontiers in digital health, 2022. 4: p. 920662. DOI: 10.3389/fdgth.2022.920662 . [PubMed: 36339516]. https://doi.org/10.3389/fdgth.2022.920662 PMid:36339516 PMCid:PMC9628998 |
||||
24. Kwak, Y., J.W. Ahn and Y.H. Seo, Influence of AI ethics awareness, attitude, anxiety, and self-efficacy on nursing students' behavioral intentions. BMC nursing, 2022. 21(1): p. 267. DOI: 10.1186/s12912-022-01048-0. [PubMed: 36180902]. https://doi.org/10.1186/s12912-022-01048-0 PMid:36180902 PMCid:PMC9526272 |
||||
25. Thurzo, A., W. Urbanová, B. Novák, L. Czako, T. Siebert, P. Stano, et al., Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Healthcare (Basel, Switzerland), 2022. 10(7). DOI: 10.3390/healthcare10071269 . [PubMed: 35885796]. https://doi.org/10.3390/healthcare10071269 PMid:35885796 PMCid:PMC9320442 |
||||
26. Khanagar, S.B., A. Al-Ehaideb, P.C. Maganur, S. Vishwanathaiah, S. Patil, H.A. Baeshen, et al., Developments, application, and performance of artificial intelligence in dentistry - A systematic review. Journal of dental sciences, 2021. 16(1): p. 508-522. DOI: 10.1016/j.jds.2020.06.019 . [PubMed: 33384840]. https://doi.org/10.1016/j.jds.2020.06.019 PMid:33384840 PMCid:PMC7770297 |
||||
27. Yin, J., K.Y. Ngiam and H.H. Teo, Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review. Journal of medical Internet research, 2021. 23(4): p. e25759. DOI: 10.2196/25759 . [PubMed: 33885365]. https://doi.org/10.2196/25759 PMid:33885365 PMCid:PMC8103304 |
||||
28. Ali, O., W. Abdelbaki, A. Shrestha, E. Elbasi, M.A.A. Alryalat and Y.K. Dwivedi, A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge, 2023. 8(1): p. 100333. DOI:10.1016/j.jik.2023.100333 https://doi.org/10.1016/j.jik.2023.100333 |
||||
29. Sood, S.K., K.S. Rawat and D. Kumar, A visual review of artificial intelligence and Industry 4.0 in healthcare. Computers and Electrical Engineering, 2022. 101: p. 107948. DOI: 10.1016/j.compeleceng.2022.107948. https://doi.org/10.1016/j.compeleceng.2022.107948 PMid:35495094 PMCid:PMC9040399 |
||||
30. Gonzales, J.T., Implications of AI innovation on economic growth: a panel data study. Journal of Economic Structures, 2023: (1)12: p.13. https://doi.org/10.1186/s40008-023-00307-w |
||||
31. Aoki, N., The importance of the assurance that "humans are still in the decision loop" for public trust in artificial intelligence: Evidence from an online experiment. Computers in human behavior, 2021. 114: p. 106572. DOI: 10.1016/j.chb.2020.106572. https://doi.org/10.1016/j.chb.2020.106572 |